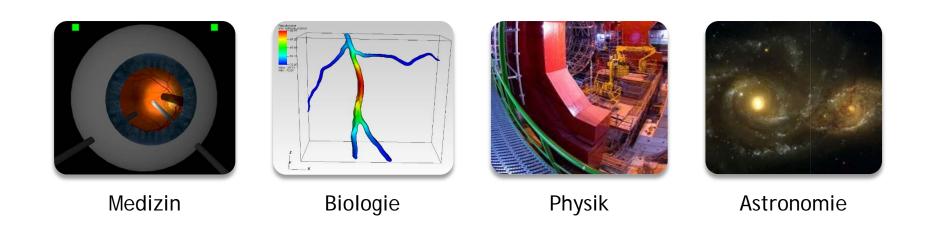
INFORMATIK @ UNIVERSITÄT HEIDELBERG


Studiendekan - Filip Sadlo

http://www.informatik.uni-heidelberg.de/

Einführungsveranstaltung - Bachelor Informatik - Oktober 2023

FORSCHUNGSSCHWERPUNKTE DER UNIVERSITÄT HEIDELBERG

... sowie viele weitere Natur- und Geisteswissenschaften!

DIE STRUKTUR DER UNIVERSITÄT (VEREINFACHT)

Fakultäten fassen Wissenschaften zu einer Verwaltungseinheit zusammen und können aus Instituten bestehen

FAKULTÄT FÜR MATHEMATIK UND INFORMATIK

Unsere Fakultät hat zwei Institute

- Institut für Informatik (IfI): Lehre und Forschung vor allem in der Angewandten Informatik (http://www.informatik.uni-heidelberg.de/)
- Institut für Mathematik: Mathematikausbildung der Studierenden der Informatik

Weitere beteiligte Zentren/Institute

- Interdisziplinäres Zentrum für Wissenschaftliches Rechnen IWR (interdisziplinär, viele beitragende Fakultäten) (<u>www.iwr.uni-heidelberg.de</u>)
- Institut für Technische Informatik ZITI (gemeinsam mit der Faculty for Engineering Sciences) (www.ziti.uni-heidelberg.de)

Lehre: alle sind beteiligt (in unterschiedlichem Umfang)

Forschung: siehe http://www.informatik.uni-heidelberg.de/forschung.html

INSTITUT FÜR INFORMATIK (IFI)

ENTSTANDEN IN 2001, DECKT DIE KERNINFORMATIK AB, INF 205

Kern

Artur Andrzejak: Parallele und Verteilte Systeme

Michael Gertz: Datenbanksysteme

Felix Joos: Theoretische Informatik

Barbara Paech: Software Engineering

Christian Schulz: Algorithm Engineering

Assoziiert/ kooptiert

Peter Bastian: Wissenschaftliches Rechnen

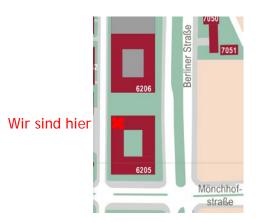
Klaus Maier-Hein: Medical Imaging Computing

Lena Maier-Hein: Computer Assisted Medical Interventions

Stefan Riezler: Statistical Natural Language Processing

Filip Sadlo: Visual Computing

INTERDISZIPLINÄRES ZENTRUM FÜR WISSENSCHAFTLICHES RECHNEN (IWR)


Lehre und Forschung in Mathematik und der Angewandten Informatik

- Mathematische Modellierung Simulation Optimierung Visual Computing
- Anwendungen in Physik, Biologie, Archäologie, ...
- Ca. 50 Mitglieder

Mathematikon, INF 205, teilweise in Bauteil B

6205 6206

Mathematikon Bauteil A Mathematikon Bauteil B

INSTITUT FÜR TECHNISCHE INFORMATIK (ZITI)

Lehre und Forschung in den Bereichen der Technischen Informatik

• Rechnerarchitektur • Robotik • Medizintechnik • Anwendungsspezifische Rechner • Schaltungstechnik und Simulation • Computing Systems

Im Gebäude INF 368

Robert Strzodka **Application Specific** Computing

Peter Fischer Circuit Design

Holger Fröning Computing **Systems**

Lorenzo Masia **Biomedical Engineering & Biorobotics**

Dirk Koch **Novel Computing Technologies**

Alexander Schubert Nima TaheriNejad Optimization, Robotics & **Biomechanics**

Computer Architecture

PRAKTISCHES: BERATUNG

Studienberatung

Priv.-Doz. Dr. W. Merkle (merkle@math.uni-heidelberg.de)

Prüfungsangelegenheiten Bachelor/Master

Prof. Dr. Michael Gertz (gertz@informatik.uni-heidelberg.de)

Prüfungsangelegenheiten Bachelor 50% mit LA-Option/Lehramt

Prof. Dr. Barbara Paech (paech@informatik.uni-heidelberg.de)

Prüfungsamt

Anke Sopka (sekretariat@informatik.uni-heidelberg.de)

PRAKTISCHES: MAILINGLISTEN

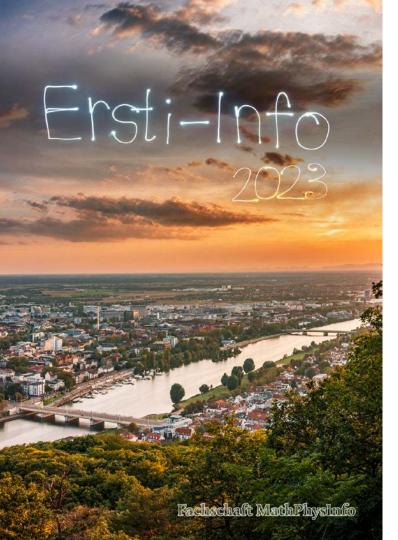
Informatik-Erstifragen

Informatik-BSC

Informatik-MSC

Informatik-LA

Informatik-M-Edu


Inf-Weiterstud

Inf-Stellen

Inf-Externes

Bei den ersten 5 automatisch aufgenommen. Details:

www.informatik.uni-heidelberg.de/mailing

FACHSCHAFT MATHPHYSINFO

Vertretung der Studierenden in Gremien Organisation von Socializing Events Weitergabe von Erfahrungswissen Information für Erstsemester: Ersti-Info (pdf)

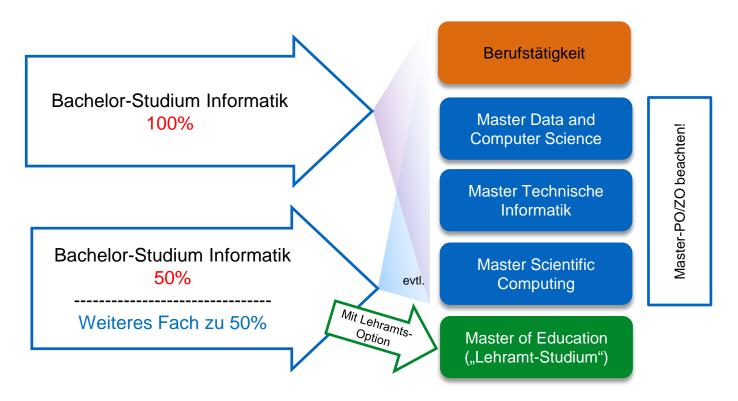
Games Night: 20. Oktober 2023, 18 Uhr im Mathematikon (INF 205)

Pub Crawl: 25. Oktober 2023, 20 Uhr am Universitätsplatz

https://mathphys.stura.uni-heidelberg.de/w/en/events-for-newcomers/

Web: https://mathphys.info

Mail: fachschaft@mathphys.info


Discord: https://discord.mathphys.info

Wöchentliche Fachschaftssitzung: mittwochs 18 Uhr im Seminarraum A+B, INF 205

ÜBERSICHT DER INFORMATIKNAHEN STUDIENGÄNGE

BACHELOR INFORMATIK (100%)

http://www.informatik.uni-heidelberg.de/

Oktober 2023

STUDIENRELEVANTE BEGRIFFE

Das Studium besteht aus Modulen

- Modul = thematisch und zeitlich abgeschlossene Lehr- und Lerneinheit
- z.B. eine Vorlesung mit Klausur, Seminar mit eigenem Vortrag
- Kann auch mehrere Teile haben

Der Aufwand eines Moduls wird in Leistungspunkten/Credit Points (LP/CP) angegeben

- 1 LP entspricht ca. 30 Stunden Arbeitsaufwand
- Studienleistung = LPs, evtl. mit Note

Bachelorstudium = 180 LP, 6 Semester Regelstudienzeit

- => Idealerweise 30 LP pro Semester (ca. 20 SWS pro Woche + 20 h Nacharbeitung / Vorbereitung / Übung)
- SWS = Semesterwochenstunde (i.d.R. 45 Minuten)

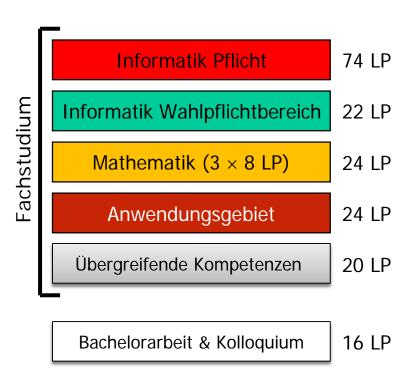
STRUKTUR DES BACHELOR

5 Semester Vorlesungen,1 Semester Bachelorarbeit

Pflichtbereich

Grundlagen des Fachs (verpflichtend)

Wahlpflichtbereich


Module eigener Wahl: Vertiefung, Interesse

Anwendungsgebiet

Module aus einem anderen Fach

Übergreifende Kompetenzen (ÜK)

• Soft- und Social Skills, wie Präsentationen, Teamwork usw.

PFLICHTMODULE

Grundlagen Informatik

- Einführung in die Praktische Informatik (IPI)
- Einführung in die Technische Informatik (ITE)

Mathematische Grundlagen

- Modul 1: Mathematik für Informatik 1 (IMI1) oder Lineare Algebra 1
- Modul 2: Mathematik für Informatik 2 (IMI2) oder Analysis 1
- Modul 3: Einführung Numerik oder Einführung Statistik oder Analysis 2

Orientierungsprüfung: Besteht aus Prüfung in IPI

• Zu erbringen spätestens bis Ende des 3. Semesters

WEITERE PFLICHTMODULE

- Programmierkurs (IPK)
- Algorithmen und Datenstrukturen (IAD)
- Betriebssysteme und Netzwerke (IBN)
- Einführung in die Theoretische Informatik (ITH)
- Datenbanken I (IDB1)
- Einführung in Software Engineering (ISW)
- Bachelorseminar
- Anfängerpraktikum
- Fortgeschrittenenpraktikum
- Bachelorarbeit
- Bachelorkolloquium

MATHEMATIK-GRUNDVORLESUNGEN

Wir haben zwei Typen von "Basis"-Mathematik-Vorlesungen:

Option 1: Mathematik für Informatik I und II

- Vorlesungen, die speziell für InformatikerInnen entwickelt wurden
- Mehr Bezug zum Fach Informatik
- Zeitpunkt: im 1. bzw. 2. Semester

Option 2/3: Lineare Algebra I und Analysis I

- Fundamentaler und grundlegend mathematisch
- Empfohlen bei späteren Vertiefungen z.B. im wissenschaftlichen Rechnen, Optimierung, Bildverarbeitung oder Visual Computing
- Zeitpunkt: entweder beide im 1. Semester (Option 2), oder im 1. und 3. Semester (Option 3)

WAHLBEREICH

Um diesen Bereich abzudecken, sind Vertiefungen möglich

=> Vermerk im Zeugnis

Existierende Vertiefungen

- Algorithms and Theoretical Computer Science
- Computer Engineering
- Information Systems Engineering
- Scientifc Computing
- Visual Computing

Beispiel Vertiefung "Information Systems Engineering"

- Schwerpunkt auf Datenbanksysteme und Software Engineering
- Befähigt zur Entwicklung, Betrieb und Wartung von großen Informationssystemen

Oder freie Kombination von Wahlmodulen des Bachelors Informatik

ANWENDUNGSGEBIET

Anwendungsgebiet: wie ein (kleines) Nebenfach

- Astronomie Biowissenschaften Chemie Computerlinguistik Geographie
- Geowissenschaften
 Mathematik
 Medizinische Informatik
 Medizintechnik
- Philosophie Physik Psychologie Wirtschaftswissenschaften

Andere Gebiete sind auf Antrag möglich

Näheres im Modulhandbuch und unter https://www.informatik.uni-heidelberg.de/studium/bachelor/anwendungsgebiet

ÜBERGREIFENDE KOMPETENZEN (20 LP)

Anteilig (12 LP) - d.h. ohne Wahlmöglichkeit

•	Präsentation	(integriert in Bachelorseminar)	2 LP
---	--------------	---------------------------------	------

- Anfängerpraktikum
 4 LP
- Erfolgreiches Bestehen des Anwendungsgebietes
 6 LP

Freie Wahl (8 LP) aus

- ÜK-Angebot unserer Fakultät
- Studienangebot Uni (z.B. Sprachkurs, aber nicht URZ Kurse)
- Betriebspraktikum, Auslandssemester, Sommerschulen ...

Näheres im Modulhandbuch

STUDIENPLAN 1. JAHR (OPTION 1: IMI1 + IMI2)

Sem.	Veranstaltung	LP	Summe
1	Einführung in die Praktische Informatik (IPI)	8	
	Programmierkurs (IPK)	4	
	Einführung in die Technische Informatik	8	28 LP
	(ITE)	8	
	Mathematik für Informatik I (IMI1)		
2	Algorithmen und Datenstrukturen (IAD)	8	
	Betriebssysteme und Netzwerke (IBN)	8	
	Mathematik für Informatik II (IMI2)	8	32 LP
	Anwendungsgebiet und/oder freie ÜK	8	

(Einführung in die Praktische Informatik ist **Orientierungsprüfung**)

STUDIENPLAN 2. JAHR (OPTION 1: IMI1 + IMI2)

Sem.	Veranstaltung	LP	Summe
3	Software Engineering (ISW)	8	8 LP
3. oder	Bachelorseminar (IBS)	4+2	
4.	Anfängerpraktikum (IAP)	2+4	
	Einf. Numerik oder Einf. Statistik	8	36 LP
	Wahlpflicht	8	
	Anwendungsgebiet und/oder freie ÜK	8	
4	Einführung in die Theoretische	8	
	Informatik (ITH)	8	16 LP
	Datenbanken I (IDB1)		

STUDIENPLAN 1. JAHR (OPTION 2: LIN. ALG. + ANALYSIS)

Sem.	Veranstaltung	LP	Summe
1	Einführung in die Praktische Informatik (IPI)	8	
	Programmierkurs (IPK)	4	
	Lineare Algebra I (MA4)	8	28 LP
	Analysis I (MA1)	8	
2	Algorithmen und Datenstrukturen (IAD)	8	
	Betriebssysteme und Netzwerke (IBN)	8	
	Wahlpflicht	8	32 LP
	Anwendungsgebiet und/oder freie ÜK	8	

(Einführung in die Praktische Informatik ist Orientierungsprüfung)

STUDIENPLAN 2. JAHR (OPTION 2: LIN. ALG. + ANALYSIS)

Sem.	Veranstaltung	LP	Summe
3	Software Engineering (ISW)	8	16 LP
	Einführung in die Technische Informatik (ITE)	8	
3. oder	Bachelorseminar (IBS)	4+2	
4.	Anfängerpraktikum (IAP)	2+4	28 LP
	Einf. Numerik/Einf. Statistik/Ana2	8	
	Anwendungsgebiet und/oder freie ÜK	8	
4	Datenbanken I (IDB1)	8	16 LP
	Einführung in die Theoretische Informatik (ITH)	8	

STUDIENPLAN 1. JAHR (OPTION 3: LIN. ALG. + ANALYSIS)

Sem.	Veranstaltung	LP	Summe
1	Einführung in die Praktische Informatik (IPI)	8	
	Programmierkurs (IPK)	4	
	Einführung in die Technische Informatik	8	28 LP
	(ITE)	8	
	Lineare Algebra I (MA4)		
2	Algorithmen und Datenstrukturen (IAD)	8	
	Betriebssysteme und Netzwerke (IBN)	8	
	Wahlpflicht	8	32 LP
	Anwendungsgebiet und/oder freie ÜK	8	

(Einführung in die Praktische Informatik ist **Orientierungsprüfung**)

STUDIENPLAN 2. JAHR (OPTION 3: LIN. ALG. + ANALYSIS)

Sem.	Veranstaltung	LP	Summe
3	Software Engineering (ISW)	8	16 LP
	Analysis I (MA1)	8	
3. oder	Bachelorseminar (IBS)	4+2	
4.	Anfängerpraktikum (IAP)	2+4	28 LP
	Einf. Numerik	8	
	Anwendungsgebiet und/oder freie ÜK	8	
4	Einführung in die Theoretische Informatik (ITH)	8	16 LP
	Datenbanken I (IDB1)	8	

STUDIENPLAN 3. JAHR (ALLE OPTIONEN)

Sem.	Veranstaltung	LP	Summe
5+6	Fortgeschrittenenpraktikum (IFP)	8	
	Wahlpflicht	14	
	Anwendungsgebiet und/oder freie ÜK	22	60 LP
	Bachelor-Arbeit und Kolloquium	16	

ABSCHLUSSNOTE

Zur Berechnung der Gesamtnote der Bachelor-Prüfung werden herangezogen:

- Die Noten der studienbegleitenden Prüfungen zu den Modulen des Fachstudiums
- Die Noten zu den Modulen des Anwendungsgebietes
- Die Note von Bachelorarbeit und -kolloquium
- Die Noten von maximal zwei Pflichtmodulen (ausser Bachelorarbeit und
- -kolloquium) können von der Berechnung ausgeschlossen werden

Details siehe Prüfungsordnung §20 (3)

NÜTZLICHE INFORMATIONSQUELLEN

Webseite: http://www.informatik.uni-heidelberg.de

Studium und Lehre -> Bachelor-Studiengang 100%

Modulhandbuch

- Beschreibung aller Module (nach Bereichen)
- Auch Studienverlaufspläne und Infos

Prüfungsordnung (PO) vom 05.10.2022

- Formale Regeln
- Insbesondere die Anhänge sind nützlich

Siehe auch Kontaktinformationen auf der Webseite

BACHELOR INFORMATIK (50%)

http://www.informatik.uni-heidelberg.de/

Oktober 2023

ZWEIFACH-BACHELOR: ÜBERSICHT

Zwei 50%-Bachelor-Studiengänge parallel

Folge der Umstellung der Lehramt-Studiengänge auf Bachelor/Master-System

Wann ist das sinnvoll?

- 1. Sie studieren auf Lehramt oder erwägen es
- 2. Sie bevorzugen eine größere fachliche Breite im Bachelor-Studium oder haben Interesse an zwei Fächern

Bis zum 6. Semester Entscheidung:

A: Fachausbildung

B: Lehramtsausbildung, erfordert Lehramtsoption, andere Wahl von ÜK (Fachdidaktik/Bildungswissenschaften/Schulpraktika)

AUFTEILUNG DER LPS IM ZWEIFACH-BACHELOR

Bereich	LP ohne Lehramtsoption	LP bei Lehramtsoption
Fach A, Fachstudium	74	74
Fach A, ÜK	10	2 (Fachdidaktik)
Fach B, Fachstudium	74	74
Fach B, ÜK	10	2 (Fachdidaktik)
Bildungswissenschaften/Praktika	-	16
Bachelor-Arbeit im Fach A <u>oder</u> B	12	12
Summe	180	180

ÜK

OHNE Lehramtsoption - 10 LP (beispielhaft)

 Präsentation (integriert in Bachelorseminar) 	2 LP
 Anfängerpraktikum 	4 LP
 Diverse Möglichkeiten aus Informatik/Uni-Angebot 	4 LP
MIT Lehramtsoption - 20 LP (für beide Fächer)	
• Fachdidaktik Fach 1 + 2	2 + 2 LP
 Einführung in die Schulpädagogik/Pädagogische Psychologie 	6 LP
 Grundlagen der Bildungswissenschaft 	4 LP
 Berufsorientierendes Praktikum (3 Wochen), Schule 	3 LP
 Berufsorientierendes Praktikum (3 Wochen), Bildungseinrichtung oder Schule 	3 LP

WEITERE INFORMATIONEN

Näheres (und vieles mehr) im Modulhandbuch Bachelor 50%

Webseiten "Lehramt an Gymnasien"

- http://www.uni-heidelberg.de/studium/interesse/abschluesse/lehramt.html
- Präsentation "Berufsziel Lehrer"

Webseiten der Informatik: http://www.informatik.uni-heidelberg.de

Studium und Lehre -> Bachelor-Studiengang 50%

Fachdidaktik Informatik: Möglichkeit, frühzeitig an Schulen aktiv zu werden

- Einzelne Lehrstunden oder Kurse an Schulen bzw. mit SchülerInnen
- http://www.mintmachen.de

Zusätzliches Treffen im November

ABSCHLIEßENDE KOMMENTARE

NETWORK!

COMMUNITY

<u>Campus-eigenes Online-Tool auf</u> <u>Moodle: Mitmachen und</u> <u>unterstützen, netzwerken,</u> <u>informieren, treffen – you!</u>

Different fora:

- Kick-off
- Learning together
- Master challenges together
- Share experiences
- Shape common recreation
- Materials exchange
- Lost and found

To COMMUNITY:

https://moodle.uniheidelberg.de/course/view.php?i d=13456

QUALITÄTSMANAGEMENT UND LEHREVALUATION

- Evaluation üblicherweise in der Mitte der Vorlesungszeit
- Wichtiges Feedback f
 ür DozentInnen und Studiuenkommission
- Üblicherweise besprochen am Ende der Vorlesungszueit (DozentIn und Studierende)

He who asks a question is a fool for five minutes; he who does not ask a question remains a fool forever.

- Chinese Proverb

Folien online:

www.informatik.uni-heidelberg.de/events

APPENDIX: INFORMATIONEN ÜBER GRUPPEN DER INFORMATIK

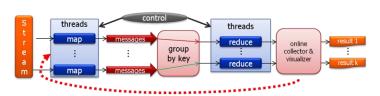
INSTITUT FÜR INFORMATIK (IFI)

PROF. DR. ARTUR ANDRZEJAK PARALLELE UND VERTEILTE SYSTEME (PVS)

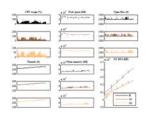
Die Gruppe widmet sich den verteilten und parallelen Systemen mit Schwerpunkten:

Verlässlichkeit, Testing und Debugging von Softwaresystemen Skalierbare Analyse von Daten

Lehre


Betriebssysteme und Netzwerke

Mining Massive Datasets


Verteilte Systeme I

Seminare und Praktika

PROF. DR. PETER BASTIAN WISSENSCHAFTLICHES RECHNEN

Numerischen Methoden für Höchstleistungsrechner, insbesondere

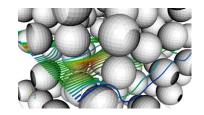
Numerik partieller Differentialgleichungen

Softwareentwurf im Wissenschaftlichen Rechnen

Parallele Algorithmen

Anwendungen, etwa Transportprozesse in porösen Medien, Signalleitung in Neuronen

Lehre


Numerik Grundausbildung (Numerik 0,1,2)

Paralleles Rechnen

Simulationswerkzeuge

Softwarepraktikum Wissenschaftliches Rechnen

PROF. DR. MICHAEL GERTZ DATENBANKSYSTEME

Modelle, Techniken und Systeme zur Analyse und Exploration von großen Mengen an Textdaten (News, Social Media, ...)

Einige aktuelle Forschungsthemen:

Analyse und Exploration von Informationsnetzwerken

Text Mining, Information Extraction, Information Retrieval

Legal Tech, Computational Law

Data Science

Lehre

Datenbanken (Bachelor)

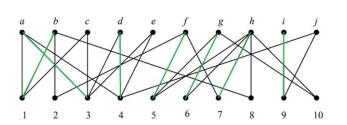
Complex Network Analysis, Text Mining

Knowledge Discovery in Databases

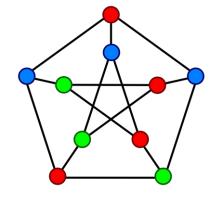
Seminare (u.a. Data/Text Mining, Netzwerke)

JUN.-PROF. DR. FELIX JOOS THEORETISCHE INFORMATIK

Forschung:


Graphentheorie: Struktur und Extremalität

Graphenalgorithmen


Kugelpackungen

Lehre

Discrete Structures (Master)

PRIV.-DOZ. DR. WOLFGANG MERKLE MATHEMATISCHE LOGIK & THEORETISCHE INFORMATIK

Grundlagenfragen der Mathematik und Informatik

Schwerpunkte: Berechenbarkeits- und Komplexitätstheorie

Aktuelle Forschungsthemen:

Grenzen der algorithmischen Methode: unlösbare und schwer lösbare Probleme Algorithmische Aspekte des Zufallsbegriffs

Lehre

Formale Sprachen und Automatentheorie (IFSA)

Berechenbarkeit und Komplexität I (MH14)

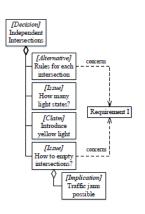
Berechenbarkeit und Komplexität II (MH15)

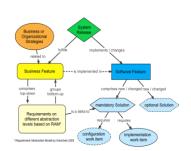
Randomisierte Algorithmen (IRA)

PROF. DR. BARBARA PAECH SOFTWARE ENGINEERING

In der Arbeitsgruppe untersuchen wir Methoden, ingenieurmäßige Prinzipien und Werkzeuge, um große Software im Team mit hoher Qualität zu entwickeln

Aktuelle Forschung:


Wissensmanagement und Requirements Engineering


Engineering wissenschaftlicher Software

Engineering medizinischer Software

Lehre

Requirements Engineering
Qualitätsmanagement
ISE-Praktikum

PROF. DR. FILIP SADLO VISUAL COMPUTING

Wir befassen uns mit der Entwicklung grafikorientierter Analysetechniken, insbesondere

Visualisierung von Vektorfeldern

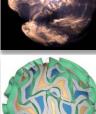
Volumenrendering

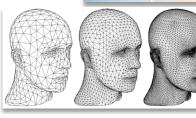
Visualisierung physikalischer Phänomene

Visualisierung in der Simulation

Lehre:

Computer Graphics (Bachelor)


Geometric Modeling and Animation


Scientific Visualization

Seminare & Praktika

PROF. DR. CHRISTIAN SCHULZ ALGORITHM ENGINEERING

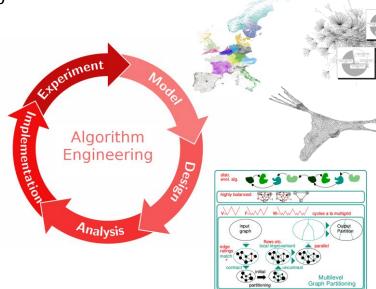
Unser Forschungsschwerpunkt liegt im Algorithm Engineering, insbesondere im Bereich skalierbarer Graphalgorithmen:

Mehrschichtverfahren & Memetische Algorithmen

Lastbalancierung

Parallele Algorithmen

Praktische Kernbildung


Dynamische Algorithmen

Lehre:

Algorithmen und Datenstrukturen I & II

Algorithm Engineering

Seminare & Praktika

INSTITUT FÜR TECHNISCHE INFORMATIK (ZITI)

PROF. DR. PETER FISCHER SCHALTUNGSTECHNIK UND SIMULATION

Die Gruppe entwickelt Elektronik-Mikrochips und Sensoren für Teilchen- und Photonenstrahlung

Anwendungsbereiche sind z.B.:

Grundlagenforschung in der Physik (CBM, Belle)

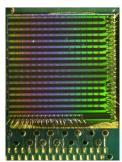
Experimente mit Synchrotronstrahlung (XFEL, ESRF)

Medizintechnik (PET, PET-MRI)

Lehre

Digitale Schaltungstechnik (BScAI)

Components, Circuits & Sim. (MScTI)


VLSI Design (MScTI)

Fortgeschrittene Schaltungen (MScTI)

Tools (MSc TI)

Silizium-Sensoren & Elektronik (MSc Phys&TI)

PROF. DR. HOLGER FRÖNING COMPUTING SYSTEMS GROUP

Performance and programmability for future and emerging technologies

High-performance computing, machine learning & data analytics

Accelerators including GPUs, FPGAs and PIM

GPUs & CUDA - architecture & compilers (simplified programming, scalable communication)

Machine learning - efficient training & inference of deep neural networks

Usual teaching

GPU Computing (WS)

Introduction to High Performance Computing (WS)

Advanced Parallel Computing (SS)

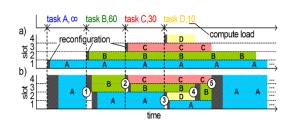
PROF. DR. DIRK KOCH NOVEL COMPUTING TECHNOLOGIES

FPGA technology ("computing without processors")

Building custom FPGAs and tools; also ReRAM (memristors) FPGAs (for dynamic RISC-V ISA extensions, ML, etc.)

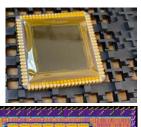
Hardware Security and reliability (e.g., FPGA virus scanner, hardware Trojans, fault injection, side channel attacks, single event upset (SEU) analysis)

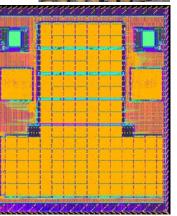
Tools and runtime systems for reconfigurable hardware


FPGA applications

Teaching

Einführung in die Technische Informatik Embedded & Reconfigurable Systems Energy-efficient Computing





PROF. DR. ROBERT STRZODKA APPLICATION SPECIFIC COMPUTING

Parallele Algorithmen und Hardware

GPU, FPGA, Vielkern (Xeon Phi, ...)

Effiziente Datenrepräsentation (Genauigkeit, Kompression, Adaptivität)

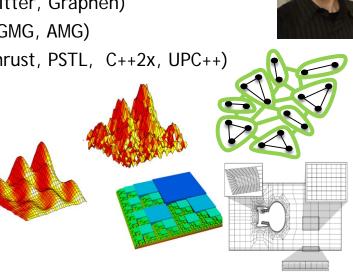
Hardware-naher Datenzugriff (Layout, räumliche und temporale Lokalität)

Komplexe Datenstrukturen (Unstrukturierte Gitter, Graphen)

Parallele Numerische Methoden (ILU, Krylov, GMG, AMG)

Moderne Programmierabstraktionen (CUDA, thrust, PSTL, C++2x, UPC++)

Lehre


C++ Practice (WS)

Parallel Algorithm Design (WS)

Advanced Parallel Algorithms (WS)

Accelerator Practice (SS)

Seminare, Projektarbeiten zu obigen Themen

PROF. DR. LORENZO MASIA ASSISTIVE ROBOTICS & INTERACTIVE EXOSUITS


Research

Robot-Aided Rehabilitation
Soft Wearable Exosuits
Bio-Robotic Design
Human Machine Interaction
Control System Engineering
Virtual Reality & Haptics
Intelligent Actuators Design

Teaching

Robotics 1
Biomechanics
System Theory

INTERDISZIPLINÄRES ZENTRUM FÜR WISSENSCHAFTLICHES RECHNEN (IWR)

PROF. DR. JÜRGEN HESSER EXPERIMENTELLE STRAHLENTHERAPIE

Forschungsthemen

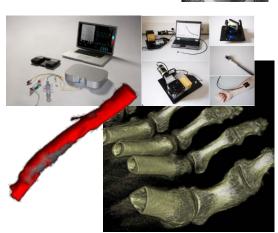
Inverse Probleme in Computational Physics und Bildverarbeitung

Modellierung und Simulation in der Medizin

Instrumentierung

Visualisierung medizinischer Daten

Lehre


Medical Image Processing

Volume Visualization

Inverse Problems

Computer Games

PROF. DR. VINCENT HEUVELINE ENGINEERING MATHEMATICS AND COMPUTING LAB (EMCL)

Numerischen Simulation und Optimierung auf Höchstleistungsrechnern

Numerik partieller Differentialgleichungen

Hardware-orientierte Numerik

Parallele und verteilte numerische Simulation

Uncertainty Quantification (UQ)

Anwendungen: Medizin, Biowissenschaften, Meteorologie und Klimaforschung

Lehre

Numerik Grundausbildung (Numerik 0,1,2)

Hardware-orientierte Numerik

Software-Design für das Hochleistungsrechnen

Uncertainty Quantification (UQ)

IT-Sicherheit

PROF. DR. GUIDO KANSCHAT MATHEMATISCHE METHODEN DER SIMULATION

Simulationsmethoden für Kontinuumsprobleme

Diskretisierung partieller Differentialgleichungen

Finite Elemente, gemischt, unstetig

Strahlung, gekoppelte Strömungsprobleme

Effiziente Lösungsmethoden

Implementation auf moderner Hardware

Software zur Simulation in C++

Lehre

Grundausbildung Numerik

Finite Elements, Mixed Finite Elements

Discontinuous Galerkin Methods

Seminar mit wechselnden Themen

Einführung in die deal. II Software

DR. SUSANNE KRÖMKER VISUALISIERUNG UND NUMERISCHE GEOMETRIE

In unserer Arbeitsgruppe befassen wir uns mit

Topologischen Methoden zu Datenreduktion

Rekonstruktion der Geometrie von Objekten aus Scans von Mittel- und Nahbereich

Visualisierung im Bereich Cultural Heritage

Lehre

Algorithmen für Geometrie und Topologie

Softwarepraktikum Computergraphik

Hauptseminar Computergraphik & Visualisierung (mit F. Sadlo)

HEIDELBERG COLLABORATORY FOR IMAGE PROCESSING (HCI)

PD DR. CHRISTOPH GARBE BILDVERARBEITUNG UND MODELLIERUNG

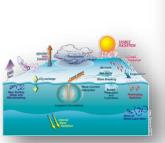
Wir befassen und mit Transportprozessen in den Umwelt- und Lebenswissenschaften. Dabei entwickeln wir bildverarbeitende Methoden in Kombination mit Transportmodellen.

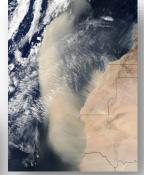
Aktuelle Forschungsthemen:

Bildverarbeitung und Bildsequenzanalyse

Parameterschätzung und Optimierung

Transport von Saharastaub und Spurengasen mittels Satellitenfernerkundung


Transportprozesse in fluiddynamischen Systemen, wie Atmosphäre-Ozean Prozesse und Mikrofluidik


Lehre

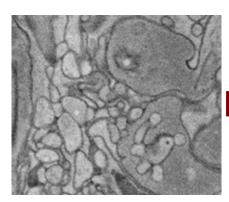
Algorithmen und Datenstrukturen Software- und Projektpraktika

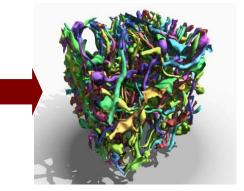
http://ipm.uni-hd.de

PROF. DR. FRED HAMPRECHT MULTIDIMENSIONALE BILDVERARBEITUNG

Weltweit werden heute riesige Datenmengen erzeugt, in der Welt der Finanzen und beim Film genauso wie in Naturwissenschaft und Technik.

Wir entwickeln neue Verfahren, um aus diesen Datenbergen interessante Informationen zu extrahieren, insbesondere mit dem Schwerpunkt Bildverarbeitung


Lehre


Image processing

Pattern recognition

Algorithms and data structures

Praktika

VISUAL LEARNING LAB

Research:

- 3D Computer Vision
- Deep Learning
- Machine Learning in Natural Science
- Combinational Optimization

Heads:

Prof. Dr. Carsten Rother

PD Dr. Ullrich Köthe

AR Dr. Bogdan Savchynskyy

Lectures:

- Fundamentals of Machine Learning (WiSe)
- Advanced Machine Learning (SoSe)
- Computer Vision: Scene Reconstruction and Understanding (SoSe)
- Optimization for Machine Learning (SoSe)

Industrial Relationship:

DAIMLER

PROF. DR. CHRISTOPH SCHNÖRR BILDVERARBEITUNG UND MUSTERERKENNUNG

Forschung:

Mathematische Modellierung und Algorithmenentwurf für die Bildverarbeitung und Mustererkennung

Lehre:

Bildverarbeitung, Computer Vision

Mustererkennung und Graphische Modelle

- → Heidelberg Collaboratory for Image Processing
- → Graduiertenkolleg: Probabilistic Graphical Models and Applications in Image Analysis

BIOQUANT: CENTER FOR "QUANTITATIVE ANALYSIS OF MOLECULAR AND CELLULAR BIOSYSTEMS"

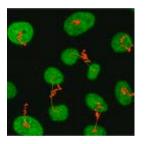
PD DR. KARL ROHR BIOMEDICAL COMPUTER VISION

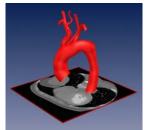
Forschung:

Entwicklung von Methoden und Algorithmen für Biomedizinische Bildanalyse

Biologische und medizinische Bilddaten

Modellbasierte Methoden


Deep Learning Methoden


Lehre:

Projektseminar Biomedizinische Bildanalyse Seminar Biomedizinische Bildanalyse: Deep Learning

Praktika

